Non-thermal plasmas induced electrostatic stress on corneocyte desquamation.
نویسندگان
چکیده
The advent of non-thermal plasma brought a breakthrough in exploring its clinical applications in dermatology to bolster tissue generation in the domain of plasma medicine. This study aimed to investigate the effect of non-thermal plasma on the corneocyte of the skin cells, in treating superficial skin diseases via the process of corneocyte desquamation, a probable mechanism for skin cell proliferation. The postulated brick and mortar arrangement of corneocytes in the stratum corneum was modeled consisting of three corneocytes and three corneodesmosomes in a simulation domain of 40.30 × 3.00 μm² using Maxwell 2D finite element analyzer. The corneocyte desquamation was quantified by the weakening of corneodesmosomes due to electrostatic pressure (~530 MV/m) on the corneodesmosome surface exceeding its tensile strength (~76 MPa). A mathematical model displaying a relationship between the plasma potential and the skin tensile strength is also presented in this investigation. The non-thermal plasma could emerge as a clean and dry therapy to treat superficial skin diseases. Our study propels investigating the interaction of non-thermal plasma with the wet tissue in the deeper layer (dermis) of the skin cells and also, the development of such instruments for a comprehensive skin treatment.
منابع مشابه
Morphological Characteristics of Residual Skin Surface Components Collected from the Surface of Facial Skin in Women of Different Age
BACKGROUND Problems of skin aging and its prevention currently attract increasing attention with the growth of human life expectancy. The morphology of the stratum corneum (SC) is well known, but investigation of age-related changes of its structure is difficult in the absence of non-invasive sampling methods. The residual skin surface components (RSSC) that overlay the SC can be easily collect...
متن کاملModulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons
Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...
متن کاملElevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides.
Netherton syndrome is a congenital ichthyosis associated with erythroderma, hair shaft defects, and atopic features. The mutations of the secretory serine protease inhibitor Kazal-type 5 gene have been identified in Netherton syndrome patients; however, the actual physiologic substrates of the serine protease inhibitor Kazal-type 5 proprotein are unknown, and how the genetic defects cause chara...
متن کاملLXR and PPAR activators stimulate cholesterol sulfotransferase type 2 isoform 1b in human keratinocytes.
Liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) are potent regulators of keratinocyte proliferation, differentiation, and epidermal permeability barrier homeostasis. Cholesterol sulfotransferase type 2B isoform 1b (SULT2B1b) is a key enzyme in the synthesis of cholesterol sulfate (CS), a critical regulator of keratinocyte differentiation and desquamation, as wel...
متن کاملNrf2 links epidermal barrier function with antioxidant defense
The skin provides an efficient permeability barrier and protects from microbial invasion and oxidative stress. Here, we show that these essential functions are linked through the Nrf2 transcription factor. To test the hypothesis that activation of Nrf2 provides skin protection under stress conditions, we determined the consequences of pharmacological or genetic activation of Nrf2 in keratinocyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta of bioengineering and biomechanics
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2013